Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Microbiol Res ; 169(5-6): 325-36, 2014.
Article in English | MEDLINE | ID: mdl-24144612

ABSTRACT

Plant growth-promoting rhizobacteria (PGPR) are free-living bacteria which actively colonize plant roots, exerting beneficial effects on plant development. The PGPR may (i) promote the plant growth either by using their own metabolism (solubilizing phosphates, producing hormones or fixing nitrogen) or directly affecting the plant metabolism (increasing the uptake of water and minerals), enhancing root development, increasing the enzymatic activity of the plant or "helping" other beneficial microorganisms to enhance their action on the plants; (ii) or may promote the plant growth by suppressing plant pathogens. These abilities are of great agriculture importance in terms of improving soil fertility and crop yield, thus reducing the negative impact of chemical fertilizers on the environment. The progress in the last decade in using PGPR in a variety of plants (maize, rice, wheat, soybean and bean) along with their mechanism of action are summarized and discussed here.


Subject(s)
Bacteria/growth & development , Bacteria/metabolism , Fabaceae/growth & development , Fabaceae/microbiology , Plant Development , Poaceae/growth & development , Poaceae/microbiology , Agriculture/methods , Plant Roots/microbiology , Soil Microbiology
2.
Syst Appl Microbiol ; 26(3): 453-65, 2003 Sep.
Article in English | MEDLINE | ID: mdl-14529189

ABSTRACT

We have analysed 198 fast-growing soybean-nodulating rhizobial strains from four different regions of China for the following characteristics: generation time; number of plasmids; lipopolysaccharide (LPS), nodulation factors (LCOs) and PCR profiles; acidification of growth medium; capacity to grow at acid, neutral, and alkaline pH; growth on LC medium; growth at 28 and 37 degrees C; melanin production capacity; Congo red absorption and symbiotic characteristics. These unbiased analyses of a total subset of strains isolated from specific soybean-cropping areas (an approach which could be called "strainomics") can be used to answer various biological questions. We illustrate this by a comparison of the molecular characteristics of five strains with interesting symbiotic properties. From this comparison we conclude, for instance, that differences in the efficiency of nitrogen fixation or competitiveness for nodulation of these strains are not apparently related to differences in Nod factor structure.


Subject(s)
Glycine max/microbiology , Rhizobium/physiology , Symbiosis , Bacterial Proteins/analysis , China , Congo Red/metabolism , DNA Fingerprinting , DNA, Bacterial/isolation & purification , DNA, Ribosomal/analysis , DNA, Ribosomal Spacer/analysis , Electrophoresis, Agar Gel , Electrophoresis, Polyacrylamide Gel , Lipopolysaccharides/analysis , Melanins/biosynthesis , Plasmids , Polymorphism, Restriction Fragment Length , RNA, Ribosomal, 16S/genetics , Random Amplified Polymorphic DNA Technique , Rhizobium/chemistry , Rhizobium/genetics , Rhizobium/isolation & purification
3.
J Biotechnol ; 91(2-3): 243-55, 2001 Oct 04.
Article in English | MEDLINE | ID: mdl-11566395

ABSTRACT

Quantitative analyses of fast- and slow-growing soybean rhizobia populations in soils of four different provinces of China (Hubei, Shan Dong, Henan, and Xinjiang) have been carried out using the most probable number technique (MPN). All soils contained fast- (FSR) and slow-growing (SSR) soybean rhizobia. Asiatic and American soybean cultivars grown at acid, neutral and alkaline pH were used as trapping hosts for FSR and SSR strains. The estimated total indigenous soybean-rhizobia populations of the Xinjiang and Shan Dong soil samples greatly varied with the different soybean cultivars used. The soybean cultivar and the pH at which plants were grown also showed clear effects on the FSR/SSR rations isolated from nodules. Results of competition experiments between FSR and SSR strains supported the importance of the soybean cultivar and the pH on the outcome of competition for nodulation between FSR and SSR strains. In general, nodule occupancy by FSRs significantly increased at alkaline pH. Bacterial isolates from soybean cultivar Jing Dou 19 inoculated with Xinjiang soil nodulate cultivars Heinong 33 and Williams very poorly. Plasmid and lipopolysaccharide (LPS) profiles and PCR-RAPD analyses showed that cultivar Jing Dou 19 had trapped a diversity of FSR strains. Most of the isolates from soybean cultivar Heinong 33 inoculated with Xinjiang soil were able to nodulate Heinong 33 and Williams showed very similar, or identical, plasmid, LPS and PCR-RAPD profiles. All the strains isolated from Xinjiang province, regardless of the soybean cultivar used for trapping, showed similar nodulation factor (LCO) profiles as judged by thin layer chromatographic analyses. These results indicate that the existence of soybean rhizobia sub-populations showing marked cultivar specificity, can affect the estimation of total soybean rhizobia populations indigenous to the soil, and can also affect the diversity of soybean rhizobial strains isolated from soybean nodules.


Subject(s)
Glycine max/microbiology , Glycine max/physiology , Rhizobiaceae/physiology , China , Hydrogen-Ion Concentration , Nitrogen Fixation , Soil Microbiology
SELECTION OF CITATIONS
SEARCH DETAIL
...